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Abstract

. e  cons ider a regular Markov process w i t h  continuous parameter , countable

state space , arid stationary transition probabilities , over which we define a

c las s f traffic processes . The feasibility tha t multiple traffic processes

canstitute mutually independent Poisson processes is investigated in some detail.

We show that a variety of independence conditions on a traffic process

and the underlying ~1arkov process are equivalent or sufficient to ensure Poisson

related properties ; these conditions inc lude independent increments , renewal ,

weak poiritwise independence , and pointwise independence. Two computationa l

criteria for Poisson traffic are developed : a necessary condition in terms of

weak pointwise independence , and a sufficient condition in terms of pointwise

independence. The utility of these criter ia is demonstrated by samp le app lica-

tions to queue irig-theoretic mode ls .

It follows that, for the class of traffic processes as per this paper in

queueing-theoretic context, Muntz ’s M M property , Gelenbe and Muntz’s

notion of completeness, and Kelly ’s notion of quasi-reversibility are essentially

equiva lent to pointwise independence of traffic and state . The latter concept ,

however , is the most general one. The relevance of the theory developed to

queueing network decomposition is also pointed out.

L

Key words : Markov Processes , Traffic Processes , Poisson Processes , Queueing ~ IJJ
Theory , Queueing Networks , Traffic in Queueing Networks, Decomposi- °l
tion of Queue ing Networks
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I. In t roduc t ion

This paper has grown out of prev ious work on traffic in certain queueing

networks ( ¼ [ ,  [19], 20]) whose state process is a discrete state Markov

p rocess. The paper generalizes several aspects of the discussion and results

in the papers alluded to above . In particular , a genera l notion of a traffic

process over a discrete state Markov process will be defined and the feasibility

of it being a Poisson process will be investiga ted . We shall also exemp lif y the

utility of the results by app lying them to a number of queueing models .

In the way of motivation , we point out that traffic processes in networks

i~ith flow characteristics (e.g., queueing networks , communication networks ,

machine repair shops , etc.) are an important operating characteristic of such

models . They are also of major importance to the study of valid decompositions

of such networks . It is common to postulate , in such mode ls , that the incoming

traffic is a Poisson process , a fact that often renders a mathematical analysis

tractable ; it is also based on many real-life empirical data. If, in addi tion ,

one may validly assume that traffic flows within the network are also Poisson

processes , then this could give rise to decompositions of the origina l network

such that each component suboetwork may be validly studied in isolation ([4], [20]).

The treatment of traffic processes in this paper will , however , be more

general--at the level of Markov processes .
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2. Traffic Processes over a Discrete State Markov Process

Throughout the paper , C(t)l t�a will designate a right-continuous Markov

process w i t h  parameter set [a , ‘°) for some real a, and a countable state set

We assume 
~
C(cfl

~~~ 
to have standard and stationary transition probabilities ,

so that the associated infinitesimal generator matrix Q is time homogenous ; its

transition rate elements are denoted q(
~ , ~) ,  v ,  5 -

~ ~~~. We shall further assume

that the q(~, )  ~ q(y, 5) are bounded as y ranges over r. Thus the process

is regular in the sense of ~ialar [8] p. 251 and our assumptions on

r C (t Y}~ imply that the associated Forward and Backward Kolmogarov ~quations have

unique and identical solutions for the transition probabilities ([12] p. 475).

Denoting c
~
(Y) ~ P[C(t) ~i] and premultiplying the matrix form of the

Forward Equations (cf. 11].) pp. 240-241) by a row vector initial condition with

components Ca
(v) yields a system of equations in the absolute state probabilities

c (‘i) c (~)q(~ , -y) - c~ (~i)q(’i)~ t � a, y ~ 1’. (2.1)
~ t ~ ~~F-~v~ ~

We shall say that equilibrium prevails if tC(t)
~~~~ 

is in steady state;

equivalently , in equilibrium, 
~~ 

c~ (v) a 0, t � a, for all v E ~~~.

Next, let 9 - r (~ , ~) :  y - r) be an arbitrary set of pairs of distinct

states . To avoid trivialities we shall always assume that 9# ~~~. For each ,
~ 

€ r ,

9 gives rise to the following sets 9(v , 0 ~ ~: (v, s)  ~ 9~ and

9 (, v) ~ ~~: (S~ ‘) ~

Consider the sequence of epoches CT~)_0 
where

f a, if u 0
T ~

inf r t : t > T~_ 1, (C(t -) ,  C( t ) )  E s ) ,  if n > 0

induced by ~~~.

Thus , T
~ 

is the epoch of the n-th occurrence of a jump in cC (tY 1~~ from

-2-
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some -E : to some ~ E C such tha t (‘i ,  5 )  E - . We adopt here the view that certain

state transit ions in the underlying ~C (t ) ~~~~ are interpreted as t ra f f ic  due to

ent i t ies  (customers , massages , etc.) moving about in the system.

Instead of studying the traffic point process :rn ) n~~
, one ~~y equiva-

lently elect to study the traffic interval process :r~+1 - Tn ) _O I or equiva—~

lencly again the traffic counting process 
~
K(t))

~~~ 
defined by

f 0 , if a
K ( t )  —

I n , if t <

The state space of ~
K(t )

~~~~ 
is N ~J ~0} where N is the set of na tural numbers .

In this paper , we shall adopt the following termino logy .

Defini t ion 2.1

A t r a f f i c  process over ~
C (t Y j

~~~ 
is a p rocess 

~
K ( t ) i t~~ 

induced by some

.~2 
~~~ 

v ) :  -y E r ’i as described above . The inducing -9 will henceforth be

referred to as a traffic set.

The particular cho ice of the representation of a t ra f f ic  process is a mere

techn ica l convenience serving the purposes of this paper . It is simply due to

the fact that a Poisson process can be represented as a counting process whose

state probabilities satisfy a sthple sYstem of birth equations .

Wha t can be said about the join t process [(C (t) , K ( t ) ) ) t~~
? First , we show

(ef .  (4] ,  Theorem 1)

Lame 2.1.

The joint process r (C(t) , K ( t ) ) }
~~~ 

is a conservative Markov process with

bounded transition ra tes .

- .._ — -
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1~ Proof

The j umps of t K ( ty I~~~ 
are contained in those of CC (t)

~~~~~
. Therefore , the

joint process is conservative , s ince ~
C(t ) )

~~~ 
is. Clear ly , for every s < u ,

K (u )  - K(s) is measurab le with respect to the c-algebra c~C (t): s < t ~ u)

generated b y !C(t)~~<~~~. Let a < t~ < t
2 
< ,. . < t~ < u be a partition of the

interva l (a, u]. Then , for any n.~ z N ‘J C O l ,  1. � j  � r , and by the

Markov property of

r
P (C (u) — ~~

-
, K( u ) n ~ 1C(e ) — ‘i , K(t ) a fl

1—1 
j j

r— P[ C (u ) — ‘i, K(u) - K(t ) a - 
~r ’ C(t ) — v , K (t ) — a

i—i 
j I i i

— P(C (u ) — ‘~~~, 
K( u ) - K( t

~
) — a - nr !C( Cr

) — v , Ktr 
—

— P( C (u ) — ‘~~~, 
K( u ) — a

~
C(tr) 

— “r ’ 
Ktr 

—

which verifies the requis ite Markov property of the process t (C (t), K(t)Y1~~~
.

Finally , boundedness of the trans ition rates of the joint process follows

from the fac t that they have the form

q(-y, 8), if (v, 6 ) E 9 a a d O � i j - l

~ ( (v , i), (6, j)) q(’~, a ) ,  if (v , a )  ~ ~ and 0 ~ i — j  (2.2)

0, otherwise

Denoting P
~
(v. a) ~ P(C (t) — -y ,  K (t) — a] and with the aid of (2.2), we can

now derive the equations in the abeoluts state probabilities for r (C(t), K(t)))
~~~

,

analogous ly to the ones previously derived for

~~ 
P~(Y, a) E 

~~~~ 
n ) q(~ , y) + 

~~ 
n - l)q(~ , v)

- 

~~~~~~~~~~~ 

n)q(v), t � a , (‘i , a) E r x (N ‘
~~ tO)). (2.3)

- - - -——
. 
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The initia l conditions are

if k 0

k) — (2.4)

0 , otherwise

s ince K(a) — 0 a lmost surely .

Eq. (2.3 ) can be equiva lent ly writ ten as

-

~~~~~ 

P
~

(v
~ 

a) 
~~~~~ 

n )q (~~, ‘,‘) - 

~~~~~ ct)q(y)-

+ (P (r , a - i)  - P~~” a) ) q ( ~~, v ) ,
t

t � a , (y, a) E~ ~ x (N U C OP ,  (2.5)

by adding and subtracting P~ (r , n)q(~ , v) from Eq. (2.3).

Finally , denoting k
~

(a) P [K ( t )  — a ]  and su ing Eq. (2 .5) over ‘
~
‘ € i

gives us

~~ 
k~ (a) :_ - : 

(P t (
~~, a - 1) - 

~~~~~ 
n ) ) q ( ~ , v ) ,

yE. ‘~‘t~ (.,’y)

t~~a , n E N U C O ) .  (2.6)

To interchange s~. ation and differentiation in the above we have used the fact

that the P
~
(v. a) have derivatives of every order in t , and tha t every countable

sum of the P
~
(v
~ 

a) over a subset of r x (N Li £0)) is uniformly convergent on

each compact time interv a l of a , ‘s) . This fac t will henceforth justify all

ter~~ise operations on sums of the P
~

(y, a) such as termwtse integration ,

differentiation , etc . (L243 , 1.1, 1.7).

Throughout the paper we denote M(t) ~ E ( K ( t ) ] .  To avoid trivialities we

shall , hencef orth , restric t the discussion to substantive traffic processes in

the follow ing sense : -

- — . ~~~~~~~~~~~~~ - - -  - - -~ -—- - -. - -
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Definit ion 2.2

A t ra f f ic  process is nontrivia l if M (t )  ~ 0 ; otherwise it is trivial.

We now shou

Theorem 2.1

t

M (t) ‘

~~~ ~~ q (’, , i)  c .,(~)dr , t � a. (2 .7)
vEr ~~~~~~~~~

Proof

For every fixed j E N sum (2.6) over a � j ;  then integrate both sides of

the resultant sum thus obtaining
t

PtK (c) ~ jJ q ( ’ , v)  p.r~
”
~ 

j  - l)d-r , t � a.
vEr —€9(~ ,~)

Eq. (2.7) now follows by sunning the above over j  € N , s ince t I ( ( t ) )
~~~ 

is a

nonnegative integer-valued random variable .

CoroLlary 2. 1

M(t ) a Xt , t ~ 0 , for some \ � 0 iff

a coast., t ~ a.
Er “E~(• ,v)

In particular , M(t) a ?.t , t ~ a , in equilibrium .

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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3. Poisson traffic Processes

In this section we shall  give a number of simple characterizations of

Poisson rela ted traffic processes over a Markovian process. We shall see that

only a subset of the ordinary Poisson axioms will here suffice.

To simplify notation we shall henceforth denote

m (t) ~ c~ (~)q(-’, ‘y ) M(t )  and m(t , y )  ~~ ~~~~~~~~ ‘i) .
.i~~r ~~~~~~~

Intuit ively , m (t )  is the total rate of expec ted t r a f f i c  coun t , while tn(t, v)  is

the rate of expected t ra f f ic  count due to transitions into state v .  Observe tha t

m ( t)  — ~~ m (t, ‘.‘) and that in equilibrium both m (t) and m(t, ‘~ ) are independent of t .
.It i

The first theorem characterizes an arbitrary Poisson process over

Theorem 3.1

• 
t K ( t ) )

~~~~~ 
is a Poisson process i.ff 

~
K(t))

~~~ 
has independent increments .

Proof

A Poisson process has independent incre~’gnts by definition . Conversely , the

only counting process with unit jumps and continuous mean function is the Poisson

process (see e.g., çinlar (8] Ch. 4) .

The second theorem characterizes a time homogenous Poisson process over

Theorem 3.2

rK(t)}
~ 

is a time homogenous Poisson process iff the following conditions

hold :

i) tmn ) o is a renewa l process

ii) m (t) a in (a) ,  t � a.

-7-
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Proof

(~) If rK(tY~~~ 
is a time homogertous Poisson process then it is well-known

that ~r ~~
“ is a renewa l process. Furthermore , the rate function of ~K ( t) ~ is- n ’ n O  t�a

m (t) ~ m (a) as required , due to Corollary 2.1.

(r) Conversely , suppose that i) and ii) hold . Since the renewal function

t

R (t )  of :ra:~~~ 
is R(t) — M(t) — m (- )d~r — t n (a )t , i t  f o l lows that 

~
K ( t )

~~

must be a time homogenous Poisson process , as R(t) determines a renewal process.

Corollary 3.1

In equilibrium , the renewal process property of fT
a~
”

O is equiva lent to

the Poisson process property of

The preceding characterizations give us some information as regards non-

Poisson traffic processes , by way of elimination.

Corollary 3.2

Suppose 
~
K(t))

~~~ 
is not a Poisson process . Then r K ( t ) ’

~~~ does rio t have

independent increments , and , in equil ibrium , the respective point process t T~)~~ 0
is not even a renewal process (though it may be a delayed renewal process).

7. ~~itip 1e Poisson Traff ic:  Queuej~~-m~0,.~~ 4 , . ~~~~~~~~~~~~~~~~
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M u lt i p  Traffic ?rocesses over a 3iscrot~ 3tate -~i r k o v  Pr ~

L~t K ( t ) ~ . ..  K (t ~~ be t r a f f i c  p r c ~~sses ~ve r C ( t Y  ,- I t�a ~ t�a - t�a

some f ixed but arbitrary L ~~ . For the i-th t r a f f i c  process  above , the  asso-

ciated entities are derioted for its traffic set , M .(t) for its mean functicn ,

~ ?~ K.(t) n~~, etc.; in genera l , we appe nd the appropriate index c -c

such previous ly defined symbols . To simp lify notation we shall denote in the

sequel K(t) ~ (1(1(t), ... , K
2
(t)) to be the vector traffic process ,

a ~ (n 1, ... , a 2
) to be a vector with nonnegative integer components , and

~ (a) ~ PtK (t )  — a , . .. , i( .( t )  a ~~. L e a  2.1 stj].1 ho lds ~utatis rautandis1 1 2
f or the j o i n t process ~(C ( t) ;  K

1(t), ..., K
2
(t))

~~~~
; the new transition rates are

~ 
q(-i , 

~~
) ,  if i i — -, (- - , f)e .

i_l i 1

~
•( (‘/ , ~~ (~~~, J))  1 (4.1)1. 0 , otherwise

(‘i. i) ,  ~~ j )  x N J  ~0~ ) 2 ; in the above is the characteristic function

1 ‘~ ~~~ (~‘ , ~)
~~~ ~) — 1~

t. 0 , othe rwise

and e~ is the n-dimensional unit vector with 1 in the i-tb coordinate.

The counterpart of Eq. (2.5) for the joint process

C (t ) , I(
1(t ) , ..., Ki ( t ))

~~ is

.

~~~~ 

~~~~~~~~~~ 
~~~ — 

- ~~~~~ 
n ) q (~ , ‘, ) — P

~~
(-v , n)q(y)

;E. -~~)
2

- - + P
~

(
~’, a — ‘(~~~(~~~~ 

-i)e )  - 
~~~~~ 

a))q(— , v), (4.2)
2 i—i

—E ~~~~~~~
i l

t � a , (v , n) x ~N

-9—
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For reasons that will become apparent later on , we shall restric t the

discussion to traffic processes which are disjoint in the fo l lowing  sense:

Definition 4.1

.., fK
2
(t))~~~ 

are said to be disjoint traffic processes if

their associated traffic sets 
~~~~~~

, 

~~~ ~~~~~ 

are disjoint sets.

For disjoint traffic processes , Eq. (4.2) reduces to

~~~~~ 

P~~(- . , a) :.‘i. i~ t ’~ ’ n)q(~ , ‘i) — 

~~~~~~~~~~~

+ ‘ 
- = a - e~ ) - 

~~~~~ 
a) )q ( ’~,’ y ) ,  (4.3)

j 1  
~~ 

( .

t ~ a , (y ,  a) E F x (N U t0~)
2.

4 The initial condition become s

i c~ (y) , if n~ — 0 for all I ~ i � 1.

a) (4.4)
LO , otherwise.

The counterpart of Eq. (2 .6) is obtained by summing E q. (4.3) over y r

thus yielding

2.
-

~~~~ 
k
~
(n) — E = ~~~~~~~~~~~~~ 

a - e~ ) - P
~

(r
~ 

n))q(T~, y),

i 1  ~EF ~~~~~~~~ (4.5)

t ~ a , a E (N U ~~~~~

- .- - — .1 -. _-~~~~ ~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~ ~~~~~~~~~~ —~~~~~~~~ —~~~~~~~~~~ -- — — —~~- — — -  -.-——-—- —--—-- - -~~~~~~~—~~~-- —-
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5. Mu l t i p l e  Dis ~oin c P~ i~ s~ n r r a f f  ic Processes

In this sect ion we i n v e st i g a t e  the possibility that disjoint multiple traffic

p r ocesses ~K 1(t ~ ’-~ - K ,
~

t ) ’
~ 

have Poisson related properties . In par-

ticuLar , the upcoming discussion appli e s  to single traffic processes as the spec ial

case ~ — I.

Definition 5.1

The processes ~C ( t ) 1 , 
~

K i ( t ) )
~~~~, ..., ~K ,(t)1~ are said to be pointwise

independent if for every t � a the random variables ~ ( c ) ,  K1 (t) K ,t~t) are

mutua lly independent . The processes above are said to be weakly pointwtse m dc-

p~udent if for every t � a and every (a
1 

n ,’ ~N U

—~ — -
~~ 

P
t~~

’
~ 

a1, . . . , n
2

)q~~’, ~-)
i— I. \~~~.

(5.1)

2. 2.
- ~~~~~~~~~~~~~~~~~~~~~~~~ ‘v ) .

i i  v~F (~~~)

Since pointwise independence is of centra l interest here , the diajoiritness assump-

tion is made so as not to prec lude it a priori.

We begin , however , with a characterization of weak pointwise independence.

Theorem 5.1

K~(t) have mutually independent Poisson distributions for every4 t � a iff [C(t)
~~~~

,
~~
K1
(t)) , . . .,  f K ~ (t ) ) ~ are weakly poiritwise indepen-

dent processes.

Proof

(
~

) Suppose the I(1(t ) ,  1 � i � ~, are distributed as mutually independent
Poissons . Then the generating function of K(t) is

— 11-

- _ ,_-~~_._-. ,-____— - — —
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~~~~~

.~~~y 1 .  v ,) - ex p ( ~~~~M . ( t ) ( v , - 1 ) ) , t a , -. 1 . 1 -. - . : ,

whence

i~ 
. .. ,  v .) — ~~~~~~~~~~ .)

~~~ m .~~t)~ v . — 1) ,  t .~ a . ‘i ~. 1, 1 j .

On equating coefficients in (5.3) we obtain

~~ 
k~~n) - ~~

(k
~
(n - - k

~
(n))m (t)

‘ i... I , )  .... ,L._
- 2 ~ 

- k
~~~

-J (fl~ - 

~~~~ ~
) - ~~~~~/

(fl 4
, ) )  ~~ c~~~’)q~~~, ~~) .  (5.4,)

i—I j L  -) . 

1~~l 
-) - .-~~T “ - ‘ - (~ .

- .

t �~~~i , n — (a
1 a , ) 

~N

where - - is Kronecker ’s de lta.
3, 1.

Eq. (5.1) now follow s by equating the right side of Eq. (5..~+) to the righ t

side of Eq. (4.5), via a straightforward multiple induction on n — (n 1, ..., a
2.
) .

(~) Assume that Eq. (5.1) hoLds . Substituting (5.1.) into (.
~+.5) and

rearranging terms in the resultant equation yie lds Eq. ~5.-i-). rhe Latter is

equivalent to Eq. (5.3) whose unique solution is given by Eq. 5.J), sinc e the

initia l condition is ~p( Y 1. y
2
) a L , ~ 1, I. ~ i 

-. ~~ , by virtue ot  ( 4 .4 ) .

Consequently , k
~
(n) corresponds to ~ Poisson—dicitributed process..s w i t h

respective rate functions In
i
(t); moreover , the K1(t) are mutually independent for

every t � a .

CoroLlary 5.1

If rC(tfl~~~ 
is La equilibrium ~nd ‘K(t )

~~ 
is a s i n g l e ton  1~ l ’ n: ;s. u

traffic process over it , then necessarily

r +1
U 

~~~~~~~ 

P~~( ’ , O)qv’, ‘~ ) ~ (—1) (m(a))t exp -m (a)t). r ~ N U- - - r  -‘t-~~y . ) 3t

—-~~~~~~~ -~~~~ . ~~~~~~~,- -— -~~~~~~~~~~~ ~~~~Y-~~

__
- - - -  -— 

- - -~~~~~~~~~ - _____-

~~~~~~~~~~

- - 

____i
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Next we characterize p o ir itwi s e  inde~endence of traffic and state.

The-cr.~m 5 .2

C(,t)’ , Ki(t)~~~~~ 
..., ~K ,(t) ’~~~ are pointwise independent processes

if f
2 1.

-v )  c~~(’,) tn
1
(t), t � a , for every v ~ 

(5.5)
i 1  i L

?r~ of

( )  Suppose pointwise independence holds . Eq. (4.3) is equivalent to the

generating function equation

~~~1c~~
(- )

~~~
(y 1, ...‘ Y 2.~ I - 

~~~~~~~~~~~ 
..., y

2
) q (

~~, 
v )

- c
~~
(v)

~~t
(y i, . . .,  y

2
)q(~) (5.6)

2.
+ c

~
(
~

)W
~
(yi~ 

. .., y 2.
) (~~ — l ) q (

~~, 
v ) ,

i~ i ‘E~~
(.,v)

t � a , � 1, 1 � ~ � 2, v .E I’ ,

2.
where 

~
.c
~
(y1~ 

. .. ,  y ) — exp( M~ (t) (y~ - 1)) is the generating function of K(t)
£ 

ial.

due to Theorem 5.1. We use this form of . . . ,  y
2.~ 

in differentiating the

left side of (5.6) which after some manipulation becomes

y2.)€~~ 
c
~~
(v) + ct(~

i )Em j(t)(y. 
- 1)) .

Since ~~
(y 1, . .. ,  y

2
) may be cancelled on both aides of (5.6), the latter

reduces to

~~ 
c
~
(V) + c

t(V)~~~
m i(t)(y i - 1) ~~ c

~~
(V) + ~~~m . ( t , v ) ( y . - 1). (5.7)

— — .-—~~~~~~~~~~~ .~~~._.: ~~~~~~~~~~~~~~~ - 
-—

~~~~~~~~ -— -~~
-
~~~~~~~~~~~

-
~~

--  -
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E q .  ~5.5) now follows from the above by equating the relevant coefficients .

~.) Suppose Eq. (5.5) holds . It can be checked directly that

(M .
i—I. 1.
_________ - - exp (-M (t)) , if E zn . ( c ) > 0

rn .(t) 
n~~. i—i 

I.

i—I

a1, ..., n
2.
) ~ (5.8)

0, otherwise

solves Eq. (4.3) and is consistent with the initia l condition (4.4). An easy

proof of this assertion involves the transformation of (5.8) into the appropriate

..., y2.
) and then working the way backwards from (5.7) to (5.6) which

is equivalent to (4.3).

Corollary 5.2

- 
-~ 

a) ( C( t ) )
~~~~

, tKi ( t))
~~~~

, ... , 
eK

2.
(t)~~~~ are mutually pointwise independent

- j ff rC( ty}  and (Kj(t))~~~
, I ‘ i ~ 2., 

are pointwise independent in pairs .

b) Eq. (5.5) holds if f for every 1 � i �

ni~ (t~ y) c
~
(v)Lj(t), t � a , v E F,

for some functions L~(t) depending on c only ; in fac t, for every 1 � i � 2,

L~ ( t )  ~ m~~(t) , necessarily .

c) Consequently, in equilibrium, Eq. (5.5) holds if f for every 1. � i � 2.,

‘1’) c
~~
(v)Lj~ 

t � a , v ° F

for some constan ts L1; in fact , for every 1 � i �

a) ~titual poincwise independence implies poiatwise independence in pairs . Con-

versely, poiatwise independence in pairs implies for every I ~ i ~

- --~~~~-~~~~-- -—  - ~~ - -~~- - .- .- -  -- -
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~1 )  — c
~~
(’/)mj

(t ) ,  t � a , ~~ .

This becomes Eq. (5.5) on sUmming both sides over 1 ~ i ~ 2. .

b )  If Eq. (5.5) holds , then from a) the condition holds for L~(t) a mi(t).

Conversely, by Summing both sides of rn
~~
(t , ~) — c

~~
(..

~
)L j (t )  over ~, E we

deduce L~(t) e m~(t); su ing it over 1. ~ i ~ 2 i:hen yields Eq. (5.5).

c) Fo llows immediately from b) and from the time stationarity of the tn
i
(t, 4

and rni(t).

—

The relation of Eq. (5.5) and Coro llary 5.2 to Sb.intz [22j, and Gelenbe

and .‘tuntz [13] should be noted. A more detailed discussion is deferred , however ,

until Sec . 8.

Before proceeding to the ma in theorem we shall now prove two supporting

lemmas. The first one is a generalization of Corollary I in [4].

Lemma 5.1

C(t) and the multiple traffic process rK (t)
~~�a 

are pointwise inde-

pendent iff for any fixed s � a , rC (t)~~~ and tK (t) - K(sY
~~~ 

are pointwise

independent .

Proof

(4) Follows immediately by taking s a.

-‘ (‘~) Since cC(t))~~~ 
is a Markov process , it follows from Lemma 2.1 that

~(C(t), K( t) - K(s ) )~~ is also Markovian. to distinguish between ((C(t), K(t)))
~~~

and ~(C(t), K(t) - K ( s ) ) )
~ we denote the various mathematical entities associated

with the latter by appending tildas to the corresponding ones in the former .

Thus , Eq. (4.3) is satisfied by ‘
~~~

(-i
~ 

a) over the domain t E [s , •) , subject

to the initial condition (4.4) with a — s. Sinc e c
~
(v) 3 (y) for every ” E

and C � s , it a lso follows tk~~t 3j (V~ t) — (v , t) and ln
~

(t)  ~~~(t) for any

t � s , l~~~i~~~L a a d v E F .

Now , by pota twise independence of 
~C(tfl t~~ 

and 
~
K(t))

~~~
, Eq. (5.5) holds ,

~~~~~~~~~~~~~ 
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whence

a 
~~

(-,) ~~1
( t ) ,  t � s , v ~ , (5.9)

i—I. i l

also holds . The Lemma now follows from (5.9) by applying Theorem 5.2 in the other

direc tion.

The second lemma is tantamount to Burke ’s argument in [53. (See also ,

Theorem 3 in [4)).

Letmea 5.2

Suppose that 
~
C(tY

~~~ 
and the multip le traffic process :K(t)

~ t�a 
are point-

wise independent . Then, for every fixed t � a , the a-algebras ~~K(t) - K ( s ) :  a ~

and ~
‘C(u), K(u) - K(t): u ~ t are in4ependeat.

Proof

Let .‘. E rC (u), K(u) - K (t): u ~ t~ ~~C(u) : u ~ t~~. Now , from Lemma 5.1,

and the Markov property of ~~~~~~~~~ we can write for any s ~ t, 
-, E F and

r a (N .~ ~o~ yL

P(\ C(t) — ‘i, K ( t )  — K(s) —

— PL.~C( t) — ‘i- , K(t )  — K(s) — n].P[C(t) v , K(t) — K(s) a]

PL’~ C(t) 
a v).P(C(t) y) P[K(t) - K(s) - a)

— P[.~, C(t )  — v)~P[ K( t)  — K(s) — a)

whence on summing both sides above over v E F ,

PL\ , K( t )  - K( s )  a 
~] — P [A ]~ P E K ( t )  - K(s) — a) (5.10)

as required .
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Corollary 5.3

If 
~C(tfl~~~ 

and 
~
K (tY

~~~ 
are pointwtse independent processes , then by

Lemma 5.2 each 
~
Kj (t ) )

~~~~
, 1 ~ i ‘ 1- , has independent increments ; consequently ,

each is a Poisson process by combining Theorem 5.1 and Lemma 5.2.

We shall now proceed to show a stronger independence result , (cf . Theorem 4

in [4]).

Theorem 5.3

Suppose rc(ty~ and the ~ ilti p le traffic process tK(t)3~~~ are poiatwise

independent processes. Then the component traffic processes

are mutually independent Poisson processes .

Proof

In view of Corollary 5.3 it suffices to show that for each partition

a — t
o 

< t1 < t2 
< ... < tr t of an arbitrary interva l (a , t ] ,  and for any

choice of nonnegative integers n~1
, ]. ~~ 1. ~ j ,  I 

~ I ~ r , the events

~ [K~(t~) — K
~
(tj 

— 1) — n~1
]~ 1 ~ i ~ A,, 1 ~ j  ~ r ,

are mutually independent . The proof is by induction on r.

If r 1, then the Ejr are mutually independent by pointwise independence

among the 
~~~~~~~~~ 

and the induction base is established .

Assume now that the Theorem holds for r — p,  p ~ I , and show it for r — p + 1.

2. p 2.
Since [ ~ ~ E ] € ~ ~K(t ) - K ( s ) :  $ ~ t ) and [ ~ E~ +j~ 

€ s’tK(u) - K(t ): u� t )- ,
i l  i—i 

p p i—i ‘p p p

we can write by virtue of Eq. (5.10),

Pfl 
~
r E

~~1
] - P((~~ ~~E~~1

) — (n E ~~~~ 1
)]  - P(~~ ~

.E j j ).P[
~~~

E
i~~+1i . 

- - - - - ~~~ -- - -  — - -



T - ~T~~~~~~~~~~~~~~~~~~~~~~~~~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Finally , applying the induction hypothesis to the first factor, and

Lemma 5.1 to the second factor yields

A, p+]. 2. +1
P1 E~ ) — IT ~TTP[E~ ]

i_I. j 1 . ‘-~ i l  j 1

which establishes the induction step .

H
In view of Theorem 5 .3 , we now see that Theorem 5.2 provides us with a

computational criterion as follows :

CoroLlary 5.4

If Eq. (5.5) holds , then the rK
~
(t))

~~~
, 1 � i ~ 2., are mutually independent

Poisson processes with respective rate functions mi
(t). The same is true

if any part in Coro llary 5.2 holds .

A pplications of the theory developed thus far are furnished in the next

two sections .

~— -—- - -
~~~~~~~~
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6. Non-Poisson Traffic: Atomic Processes and Queueing-Theoret~ç_Exau~ 1es

This section demonstrates how weak pointwiae independenc e may be used to

show non-Poisson tra ffic by violating the necessary condition in Theorem 5.1 and

Cor o llary 5.1. Consider the class of traffic processes defined by

Definition 6.1

is called an atomic traffic process if its traffic set ® is a

singleton pair of states .

Atomic traffic processes are the elementary building blocks of all traffic

processes , since every traffic process is a superposition of disjoint traffic

atoms . We shall now exemplify the utility of the weak pointwise ind~pendence

concept vis-~-vis atomic traffic processes.

First , however , we show a more general result .

Lemma 6.1

Let rK (t)~~~~ 
be a nontrivial traffic process such that

( U ~~
(. , ~

))  r ( 
~~~ 

.)) - — ~ . (6.1)

Then ~K( t )~~~~ is not a time homogenous Poisson process ; moreover , in equilibrium

it is not a Poisson process altogether .

Proof

Setting a — 0 and letting t -‘ a+ in Eq. (2.5) gives us

~~ ~a~~’ 
0) — 

~~~~~ 
c5 (’q) 

- m(a , v)~ ~i € F.

If ~ € ~~
(. , ,~) for some ~ € F , then -

~~
(., i~) — ~ by (6.1) so that m(a , -I) — 0.

Hence

-19-
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~~ 
Pae’~ 

0) — 
~~ 

Ca (’•’ ) for any € ~~ 4, v E

Substituting the above into the left side of (5.1) for 2. — 1 and differentiating

yields for t -.

vEF ~~~~~~~~~~~~~~~ 
0)q(r , ~~~ 

- 

~~ 
~~c4

(i~)q(.~, 4 - m ( a ) .  (6.2)

Now assume ~K( t)~ is a Poisson process. By weak pointwise independence

of rC(t)~ and cK(t))
~~~ 

(see Theorem 5.1)

= : 
~~ ~a~~

’’ 0)q(— , v )  — lim [m (t)-exp(-M(t)fl
vEF ‘E€- (~ ,v) ~ t-,a+

u r n  Im(t).exp(-M(t)).(-m(t)) + exp(-M(t))~~~-m (t)j

~~~~ m (a) - (m( a ) ) 2 . (6.3)

A comparison of (6.2) and (6.3) gives us necessarily m(a) — 0. But if

is time homogenous, then rn(t) a 0 from ii) in Theorem 3.2, which con-

tradicts the nontriviality of I K (tYJ
~~~

. Finally , in equilibrium , rK(t))
~~~ 

is

necessarily time homogenous from Corollary 2.1, whence the rest of the Theorem

follows.

We can now assert,

Corollary 6.1

None of the nontrivial atomic traffic processe~ over fC (t))t�5 is a time

homogenous Poisson process. Furthermore, in equilibrium , none is a Poisson process.

Proof

The Corollary follows trivially since every singleton traffic set

— I ( ~~~, ~~~ satisfies Eq. (6.1).

~ 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -
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Thus , in equilibrium , we have the intuitively curious situation where none

of the nontrivial traffic atoms is a Poisson process ; however , an arbitrary super-

position of traffic atoms may or may not be a Poisson process. In fact , examples

of both cases abound in the queueing-theoretic literature (see next section).

We point out that if a superposition of point processes forms a ?oisson

process , then either all superposed components are independent Poisson processes

or none is. Most superposition results are variants of the first type (see, e.g.

çinlar [9]). What we have just shown is a nonvacuous example that falls within

the scope of the second type.

To further illustrate the utility of Corolla ry 6.1 we note that the departure

process (exclusive of the loss stream ) from an M/M/l/0 queue in equilibrium is

not a Poisson process. In the same spirit we can deduce that any departure stream

of cus tomers from a Markovian queueing network , such that departing customers

leave behind a prescribed network state , cannot be a Poisson process in equilibrium.

An important class of conjectured non-Poisson t r a f f i c  in queueing networks

consists in most traffic on arcs having direct or indirect feedback ([6); [19],

Conjecture 5.1). Intuitively , a recyc ling of customers takes place which deprives

the traffic of independent increments . Burke [7] proves directly the non-Poisson

conjecture for the total input into an equilibrium M/M/l queue with feedback; an

extension of this result to Jackson queueing networks (see Example 7.1) with

single server nodes appears in MeI.atnad [21). The latter is based on Corollary

5.1. The non-Poisson conjecture bears , in particular , on all traffic in c losed

queueing networks such as the ones in Gordon and Newell [14].

—

~

-

~

- - --—- - -
~~~~~~ 

- -  -
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7. ~ i1tip1e Poisson Traffic: Queueing-Theoretjc Examples

In this section we demonstrate how to app ly pointwise independence to

certa in traffic processes in a number of queueirig networks whose discrete

state is represented by a Markov process. These app lications uti1i~e the

computational criterion of Theorem 5.2 as set forth in Corollary 5.2.

Example 7.1: Jackson queueing networks (see Jackson [15)).

A Jackson network consists of J service stations with infinite line

capacities . Each station j houses s~ parallel independent exponential servers

with respective rates 
~~~~~

. Exogenous customers arrive at the stations according

to independent Poisson processes with respective rates n~ . On service completion

at station j a customer is routed to s ta t ion k , 0 ~ k � J , with probability rj ~

(a routing to k — 0 designates leaving the network altogether). All arrival,

service , and routing processes are mutually independent.

The vector valued process of the J line sizes is a Markov process with

state space F — 
~

-. (a 1, ..., n
1

) :  a
1 

N L ~ofl. Next, suppose the equations

J
— + = ~~~~ , I � j ~ J , (7.1)

3 1 
~~~~~~ 

I

have a nonnegative solution in the ~~~ 1 ~ j  � J. This is always the case when

the network is open in the sense tha t it is possible to leave the network from

every node through some finite sequenc e of rout ings (see [20], Ch. 4).

5
Suppose the network is open such that ~ ~~~—~— <  1, 1 � j � J. Then the

.1 

~
j j

.7
state equilibrium distribution is c

~
(nu, ...~ aj ) a 

~
T
~
c
~

(n ) where
i—i I

-22-.



- -

-2 3 -

a-

( l - ~~~~) - ~ —r- , if n .~~~~s .
j a . . 3 3

c (a ) =
t I n

i
( 1 — ; )  1 

~~~~ > 5

s
1
!s~~~~~~ 

~

(see 115 ] p. 520).

Let ~K
1

(t )~~~~~ be the equil ibr ium t r a f f i c  process of customers that leave

the network from station j. Thus 
~~~

. ~ (~y + e , ~): ~ E and ~~~~~~~~~~~ ~)~~~ -i+e
1~~
.

Denoting ~1
(i) ~ min n i , s .~~:1 

we compute for any ~ (n1, ..., n~ ) E F ,

m~~(t . 4 a c~~
( v + ej

)~~j
(n

1 
+

a c
~~

(
~~

) 
min~n~+1~s1~ ~

j
~~~

• +

= c
~~
(V)

~ 1~~
.p .0 = c(’y)ô

1
p
1~~

, 1 � j � .7.

Hence , part c) of Corol lary 5.2 holds for = ~- .p.0, 1 � j  � .3.

It now follows from Corollary 5.4 that the K
j
(t))

~~~
, 1 � j  ~ J , are

mutually independent Poisson processes with respective rates 5
1
p
10

.

We point out that this result includes as a special case the well-known

result by P. . 7.  Burke [5] that the equilibrium departure process from a MINIS

queue is a Poisson process with the same rate as the arrival process; this

result was arrived at by examining the interdeparture intervals. The same

¶ result was later attained by E. Reich [23] through the use of reversibility .

A related derivation was demonstrated by F. P. Kelly [17] ; his results app ly

to a large class of Màrkovian queueing networks to be described in the sequel.

- ~~~~~~~~~~ - - -t~_�. ,  ~- -- —- — -  -- -~~~ -



Example 7 .2 :  KeLly ’s networks with random routings (see Kelly 1171).

In this queueing model we have J service stations with infinite waitin g

line capacities and I types of customers. Exogenous customers type i , 1 ~ i -. 1,

arrive at station j, I 
~ 

j .3 , accord ing to independent Poisson processes with

respective rates ~1
(i). Each station j houses an exponentia l server with rate

where n
1 

is the tota l number of customers at station j. The routing

probabilities depend on the type of customer routed . In addition , the

L—th customer in line j is allocated a proportion f
1

(f , n~) of the service

effort in station j. A customer arriving at station I is inserted in the ~-th

position there with probability g
1
(~~, a1 

+ 1). Al l  arr ival , servic e and routing

processes are mutually independent . The vector-va lued process of line configura-

tions is a Markov process with s t a t e  space F — 
~(v )~ .... ‘~~)~ Cj  

E 1*) where 1*

is the set of all finite strings \~~(1)~Y~~(2) ... ‘i
1
(n~) where \1

(L) is the type

of the f-th customer in station j (1* inc ludes the empty string). The transition

rates of the state process are defined by

q(\ <4)  — c
1
c
1
(n

1
)~10

(~~W)f1
(2~ nj)

q(’~- , T
’
1 f
(4) a 

~1
(i)g.(~ , flj 

+ 1)

q(v , Tjk2~~~
) )  - c j ~~j (n j ) p j k (v j (

~
) ) f j (2 .  nj)Sk(m~ 

n.~ + 1)

where T
1~~ 

is the operator that removes the c-th customer at station j from the

network ; T
~j L  

is the operator that inserts a customer of type i in the L-th

position at station i~ 
1
jkLm 

is the operator that moves the L-th customer in

station j to the m—th position in station k.

S When the network is open with respect to every customer type i , 1 ~ i ~. I,

Eq. (7.1) has unique solutions 5
1
(i) for given — 

~1
(i) and 

~j k  —

~ (i)
1 ~. j,k � .3 , and we denote p

1
(i) ~~ — ~~~~~~~~ . Under certain conditions (see [17],

_ _ _ _ _ _ _ _  

~~~~~~
- -

-
-
~~~ -- 

- I
I 

~~~~~~ A 
~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~

2U. - I ~~st  r,~~ct  (Wi t I flUcd . I
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Theorem 2) the equilibr ium distribution has the form

c~~(~~1, ..., a b~~~A1
(\-~~) (7.2)

where b is a positive constant and

~J_ ~~(-~1
(L))

ff 91
(L) ‘ ~~ a

1 
� I

1., otherwise

Let ¶K i j
(c )

~~t�a 
be the equilibrium traffic process of customers type ~

which depart the network from station j. Thus,

4: ‘~‘ F, 1 � ~ � a
1 

+ 1) and 4 — 
~
T1

J L
(4: I. � £ ~ n1

+l~~.

. 
For any — (v 1, . . . ,  E F we now compute using the identity

i 
p
1
(i)

— c
~
(v)

n+l

mj  (t , 4 a c (T1 (4)q(T ’ ~~~ 4.1.

n + 1

~~ c~ (~y) ~1
n
1
+l q(T

1 1
( y ) ,  T

1~~~~
(T (‘i)))

J ~~ (i) 
I

n
1
+l 

~
= c

~~
(
~
) 

~~~ 
~1

cp
1
n
1
+l ~j~~j

(fl
j 
+ l)p

10
(i)f

1
(L, a

1 
+ 1)

— c
~~
(V)

~ j
(i)p j0 (i) , 1 ~ i � I, 1 � ~ J.

Again, part c) of Corollary 5.2 holds for ~1
(i)p

10
( i ) ,  1 � i ~ I,

1 ~ j  ~ .7. It now follows from Corollary 5.4 that the (K
~1
(t))

~~~ 
are mutually

independent Poisson processes with respective rates 5
1
(i)p

10
(i), in agreement

with [17] p. 553 .

S ~~~~~~~~~~~~~~~~~ — __. — -  —
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Example 7.3: Keily ’s networks with fixed routes and gaum~a-distributed service

(see Kelly [18]).

This model is a variation on the basic setup of .7 stations and I types of

customers , where we conveniently take = 1, 1 � j � J. For 1 � i � I,

customers type i arrive according to mutual independent Poisson processes with

respective rates ~(i). A customer traces a fixed route r(i, 1), r(i, 2),

r(i, S(i)) of S(i) stages through the network and then exits. At node r(i, s)

en route , a customer requires a gamea distributed (Erlang) service composed

of z(i, s) phases of mutually independent exponential services each with mean

d(i, s). We require , however , that f
1 
a g

1 
for all 1 � j � J. All arrival and

— service processes are mutually independent.

The state process is Markovian over the state space F consisting of all

J-tup les ~ (v i, ..., v,~) where each is a finite (possibly empty) string

over the set ~(i, s, p): 1 ~ i � I, 1 ~ s � S(i), 1 
~ 

p ~ z(i, s)~~. Define

s) ~ ~(i)d(i, ~~~j,r(i,s)’ 
1 � j  � 3, 1 � i � I, 1 ~ s � S(i), where

. is Kronecker ’s delta.
- - j,r(i,s)

Under certain conditions , the equilibrium state distribution is again given

by Eq. (7.2) provided we redefine

.. ..... .i . 6~~(t (L),s~ CI)) i f n > 0I

A
1

(c
1
) a (7.3)

1, otherwise

where t
3
(L) and S

j
(~~) are the type and stage respectively of the £-th customer

in line configuration y~~, and n1 
is the length of v

1
.

Let the 
~
Kjj(t)~~~~ 

be as in the previous example. Thus,

— 
~~~ (4,  4: e — (i, S( i) ,  z(i, S( i) ) ) ,  ~ E F, 1 ~ L � a 4 + 1~ andjj  .j.~

~~ 
(.,4~ 

rre (4: e (i, S( i) ,  z(i, S( i) ) ) ,  1 ~ £ � n + ~~I .j.L 

---— -— - - -~~~ --- - - - -
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Here Te
J f  

is the operator that inserts a customer with attribute set e as above

(i.e., a customer type i in his last stage of the route and last phase in service)

into the 2—th position in station j. Observing that ct (Te
j ~~~~~ 

a

~ (i,S(i))
c
~

(\f) 
~~~n1

+l) we compute,

n+1

- i~ 
~~~~~~~~~~~~~~~~~~~~~ 4

~ (i,S( i))
— c

~
(v) 

~~ ~p1
(n

1
+1) ~~~~ 

+ 1)f . (L , ~~~~. + 1)

— — c
~
(4

~j
(i, S(i)), 1 � i ~ I, 1 

~ 
j � 3.

We conclude that the 
~
K.j(t)~~~~ 

are mutually independent Poisson processes

with respective rates ~1
(i, S(i)), in agreement with [18) p. 423.

Analogous results can be similarly obtained for the class of Kelly ’s net-

works in Sec . 3 of [18] where the f
1 
are allowed to differ from the g1, but

the service requirements are constrained to be exponential.

Suppose the rate of type I. arrivals is ~(i, 4;  i.e., it is also a function

H . of the instantaneous state of the system. Kelly ([18), Sec. 5) considers the

case ~(i, 4 ~(i)’ ~TT ~(N(’q, W)) , where ~: N U ~~ 
-

~ [0, ~) is a given
WE2 :iEW

I
function , and N(y, W) ~ EN(y , i) where N (~ , i) is the number of type i customersja l

in network configuration ~~‘ . He shows that under certain conditions the equili-

brium state distribution has the form

b.B(4. H A  (v )
-1 .1_l i I

where
N(y W)-l

B(~,t) —~fl~1 —i1-~ $(n)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -
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and the A
1
(’v. ) are still defined by (7.3). Thus, in the notation of Examp le

7.3 , B (T~ (4)  a 
~~~ 

5(N (~’, W)) for any e (i, S ( i) ,  z( i , S ( i ) ) ) ,  whence
W: iE W

~~(i~S( i))
c
t

(TeL J (9) c
~
(.
~
).(1T

~~
(N(v , W ) ) ) .  )

It follows in an analogous calculation that

4 c~~(46 1
(i , s(i))~ ~~~ ~ (N(~~, W)).

W:IEW

Hence , cC(tfl~~~ 
and 

~
K
~j
(tY

~t~~ 
are pointwise independent iff i[r (N(y, W)) L’

independent of \‘ ~ F , which is generally not the case. (Notice , however , that when

the product above does depend on v E F, this does not , in general, exclude

from being a Poisson process , albeit pointwise dependent on the state . ) A similar

phenomenon takes place in Jackson [16 ] and in the following .

Example 7.4: The BCMP queueing networks (see Baskett et al. [2)).

These networks consist of four types of stations , all related to Kelly ’s

networks in [17]. There are , however , three differences : customers arr ive

according to state dependent Poisson processes ; they require type dependent

services which are mixtures of sums of exponentials ; and , on service completi3n ,

customers are allowed to change types in a Markovian manner .

Based on the equilibrium state distributions derived in [2], it can be

rigorously shown that the m
11
(t) fac tor into ct(y) and another product. The

latter contains the instantaneous arrival rate as a state dependent factor .

Consequently, the ~K jj (t Y~ �~ 
and 

~
C(t)3

~~~ 
are not , in general, poincwise

~

A trivia l cas e in point is an arrival process to a Jackson network which is
Poisson by definition . However , it can be easily verified that it is potatwise
dependent on the state , say in equilibriur~.

_ _
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independent when the network is in equilibrium. However , it can be rigorously

checked that the above are pointwise independent provided the arrival rates

are fixed. The latter fact agrees with Theorem 13 in [13].

The author is unaware of any result in the queueing-theoretic Literature

enunciating Poisson traffic (over a discrete state Markov process)that cannot

be exp lained by means of pointwise independence of traffic count and state.

8. Discussion

The class of intuitive traffic processes that can be modeled via distin-

guished state transitions in an underlying Markov process fC ( t Y
~~~ is reasonably

comprehensive vis-I-vis applications. In particular it includes all traffic

processes in the queueing-theoretic literature with the exception of certain

feedback traffic processes .

Consider a feedback stream of customers that after service completion in

station j imeediately rejoin the waiting line of that station in such a way that 
-

the state of the system remains unchanged (notice that this situation never

arises for traffic processes between distinct nodes or for traffic streams that

leave the network altogether). In this case, defining the relevant

becomes impossible since a consideration of any traffic set ~~I is insufficient to

determine the epoches in question. Moreover, a direct appeal to Lemea 2.1 is

now invalid , even thoug h the result of the 1eum~a may be correct.

- 
._ 

- -
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To remedy this situation one may attempt to proceed in two ways. First ,

it may be possible to modify rC(tY}
~~~ 

into a new Markov process 
~~
(t))

~~~ 
with

state space F for which all feedback epochs correspond to discernible state

transitions. This technique was used by Kelly ([19], Sec . 2.1), and earlier by

Daley ([lOj, p. 399) to treat balking arrivals to an M/N/s queue. The second

approach is to define directly the requisite joint process ~(C(t), K(t)))~~~ 
and

to show it to be Markovian by another technique (e.g., via a stochastic integral

representation as in [3] and [20]). Either way , chances are that the rest of

• the theory in this paper would still be applicable , as was the case in [20) and [21].

A broader class of traffic processes over Markovian processes tC (t))
~~~ 

may

be defined by allowing the traffic epochs ~~~~~~~ to be affected by past history

of tC(t)
~~~~

. One may then attempt to redefine a Markovian “state” process

with a new ~ and ~ such that [~ ( t f l ~~~ 
“remembers by state” the relevant

information in the past history of the old

The approach and definitions of this paper shed a new light on the differ-

ential equations (2.1). The traditional heuristic interpretation is that the

• “probability rate of being in state ~~~
“ is the difference between the “flow rate

into v” and “the flow rate out of ~ ‘.
“ On the other hand, let us define

r~ ;, ~) : ~ E r - ~~ )‘j  and ~ a 
~ (y , ~): ~ E r -

‘
~
‘out

Then clearly for any y E F, 
~~ 

c
~
(
~
l) m (t) - m (t), or equivalently upon

~
‘out

integration c~(~) 
a c (y)  + E [~ (t) - K (t)], t � a.

‘1in ~
‘out

From this equation it can be easily shown that for any s � t

— c5
(~’) ELK (s, t) — K (s , t ) J

~
‘in ‘tout

where K(s , t) ~ K(t) - K ( s ) .  Thus , from a traffic oriented vantage point, the

probability difference of being in state ‘q at the extreme points of any time

- i
.- -.-.———--——~ i_•&- - _ _ ——- -• —- —•---—--— — —~ — •—•—- - 
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interval Is , t ]  equals the expected difference of the number of times the

system entered and left state y in the aforesaid interval.

It is interesting to note how the Markov property of the underlying

rC(t ) ~ affects the feasibility of [K(t))
~~~ 

being a Poisson related process.

It turns out that various notions of independence play a significant role in

this respect: independent increments in 
~
K(t))

~~~ 
already ensure it to be a Poisson

process (theorem 3.1); a renewal (Tn)~~~ 
and a time invariant m (t) already ensure

the same thing (Theorem 3.2); weak pointwise independence already ensures that

disjoint K1(t), ..., K~(t), t � a, are distributed as mutually independent

Poissons (Theorem 5.1); and finally, pointwise independence already ensures that

disjoint ~Ki(tYj~ 
, ..., {K~(t))~ are mutually independent Poisson processes

(Theorem 5.3).

A number of concepts essentially equivalent to pointwise independence have

been discussed in the literature. Muntz 122) discusses departure processe~ from

an equilibrium queueing system with different types of customers whose arrival

rates are X1, 1 � i ~ I. Suppose each customer type arrives according to

independent Poisson processes such that

c (~ )q(~ ,v)
V E ~~~‘ X., 

•,
~

-. c~~(y ) i

where -

~~~~ 

is the traffic set of the respective departure process . Muntz calls

this condition the M ~ M (Markov implies Markov) property to indicate that

each such departure process is Poisson when the arrival process is. The above

condition is a special case of Eq. (5.5); it is easily seen to be equivalent

to pointvise independence in equilibrium.

In Sec. 5 of [13], Gelenbe and Munta discuss Markovian queues with Poisson

arrivals at a fixe4 rate X; they define such systems to be comp lete (ibi4. p. 52)

___________

~~~~ ----7.~~-L~
_ ~~~_ — ~L~
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if the departure process 
~

K( t)
~~~~ 

satisfies

XAt + o(~t), if n — 1

lim P[K(t) - K(t - .it) — nj C ( t )  — ~y ]  — o(At), if a � 1

l-XA t +o(At ) , ifn O

for any ~ E F.

Then, they proceed to give a heuristic derivation of equilibrium analogues

of Corollary 5.2. By virture of Lemsa 5.1, we can recognize comp leteness as

pointwise independence of rC(t))
~~~ 

and CK(t))
~~~ 

when the former is in equili-

brium.

In Sec. 6 of 118], Kelly describes a queueing network with Poisson arrivals ;

the network is represented by a Markov state process tc(t))
~~~ 

in equilibrium,

and each departing customer is classified into one of I groups depending (perhaps

stochastically) on the network’s past history. Such a queue is quasi-reversible

if (see p. 428 ibid.):

a) departures of group i customers , for i — 1, 2, ..., I, form independent

Poisson processes ; and

b) the state of the network at time t is independent of departures from the

network up until time t.

Suppose the I departure streams can be modeled by traffic processes

... , ~K1(tY~~~ via traffic sets !-~~~. 1 ~ i � I. Then quasi-

reversibility clearly imp lies pointwtse independence of fC (t)3
~~~ 

and the

r K~(~) ) ,  1 ~ j ~ I, (Condition b) above). However , Theorem 5.3 shows

that pointwise independence of f C(t))~~~ and the Kj(t))~~~
, I. � i ~ I, already

implies Condition a) above (i.e., b) implies a)). It follows that for the

class of departure processes defined as traffic processes in the sense of this

paper , quas i-reversibility is logically equivalent to pointwise independence

— -..i. ~~~ .—-- -—-- -•~- —-—-—- ~~~~~~ _ - _ ~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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(i.e., to Condition b) alone). 
. 

-

As a matter of fact , for the class of traffic processes in this paper over

an under lying tC(t)J~~~ 
in equilibrium , Kelly ’s quasi-reversibility , Muntz ’s

M M property , Gelenbe and Mantz’s comp leteness and our concept of pointwise • 
-

independence , all boil down to essentially the same thing. Although all four

concepts are largely equivalent , the pointwise independence formulation enjoys

the generality and convenience of being stated in purely probabilistic term s

without any allusion to queueing-theoretic context or an underlying equilibrium

assumption.

The utility of the pointwise independence concept is greatly enhanced by

Corollary 5.2 and 5.4. The former provides a convenient computational test

for pointvise independence which, in view of the latter , serves as a sufficient

condition for mutually independent Poisson processes; its ease of application

has been demonstrated in the examp les of Sec. 7.

The utility of the weak pointwise independence concept derives from

Theorem 5.1 and , in equilibrium situations , from Corollary 5.1. These may

serve as necessity conditions for Poisson traffic processes by checking the

actual behavior of u r n  
~
-P
~
(v
~ 
a) against the hypothesized one. This approach

was demonstrated in Sec . 6; a more substantive application of this strategy

can be found in [21] concerning traffic processes on the so-called nonexit arc s

of a Jackson network.

The concept of pointwise independence (of traffic and state) has considerable

re levance to the study of queueing network decomposition. A typical Markovian

queueing network is postulated to have Poisson arr ivals , independent servers

and independent routing switches--the above being mutually independent processes .

The problem of valid decompositions arises when one wishes to study one or more

subeetworks in isolation via the theory availab le for the origina l network . In

othe r words , under what conditions does a subnetwork sa tisfy all the pos tulates

_ _ _ _  
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 _ _  
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~f the original network? In the aforementioned typical queueing network it is

requLred that all incomir~g streams into subnetwork nodes be mutually independent

Poisson processes which , in addition , are also independent of the service and

rout ing  mechanisms operating within that subnetwork.

Now , certain subnetvorks may have a state proces s (an appropriate ly selected

subvector of the original vector valued state process), ihich still retains the

Markov property . Consider the departure streams from such a subnetwork. As we

have seen in the examples of Sec. 7, these departure streams and the compressed

state are quite likely to be pointwise independent , in equilibrium. Consequently , 
- 

-

if there is a subnetwork whose incoming customer streams are either exogenous or

from the subnetwork ’s complement, that subnetwork will indeed satisfy all postu-

• lates of the original network, thus constituting an equilibrium original network

in miniature . The reader is referred to [4] for an example of this situation

from the domain of Jackson queueing network~.

Fina lly , we point out the plausibility of extending the results of this

paper to traffic processes over Narkov processes with time dependent transition

rates or with continuous parameter and uncountably infinite state space. The

latter could enable one to treat queues and queueing networks with mor e general

arrivals and services , such as the limiting cases considered by Kelly [18] and

Barbour [1].
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